报告题目: Compressible subsonic jet flows through a de Laval nozzle
报告人:王晓慧
报告时间: 2025年06月10日下午 15:00-16:00
报告地点:腾讯会议:939-876-316
会议密码:021591
报告摘要:
This paper is concerned with the well-posedness of the compressible subsonic jet flows issuing from a semiinfinitely long nozzle, the free streamline detaches smoothly from the nozzle wall and the detachment is not known a priori. More specifically, given a semi-infinitely long de Laval type nozzle and an atmosphere pressure p_atm>0, there exist a critical value m_cr>0 and an interval [▁p,p ‾], such that for any incoming mass flux m_0∈(0,m_cr) and the pressure difference p_dif ∈[▁p,p ‾], there exists a unique compressible subsonic jet flow and the detachment lies on the divergent part of the nozzle wall. Moreover, the detachment is continuous and strictly monotonic with respect to p_dif . Finally, we also establish the optimal C^1,1/2 regularity of the free boundary at the detachment.
报告人简介:
王晓慧,2020 年 7 月博士毕业于四川大学,2020 年 8 月入职成都理工大学,2022年 12 月晋升为副教授。香港中文大学和香港城市大学访问学者。获批国家自然科学基金青年项目和数学天元基金项目;获批四川省自然科学基金青年项目和面上项目。主要从事于流体力学中 Euler 方程组的自由边界问题相关方面的研究工作,在国际 SCI 学术期刊 J. Differential Equations, Commun. Math. Sci. 和 J. Math. Phys. 等上发表论文 10 余篇。